

Abstract—Completing workable software within stipulated

timeframe has always been a challenge for computing students.
College educators teaching programming courses are facing
difficulties to guide and monitor the students from the start of
the software development cycle until the completion stage.
Likewise, students find the software development process much
more tedious, complicated and frustrating. Problem
decomposition as chunking technique is used as abstract
concept to break the programming scenarios into smaller
manageable chunk in relation to fulfilling the system
requirements. This paper presents an overview of the
difficulties encountered, and a study on problem decomposition
technique with cooperative learning to resolve such affliction. A
total of 44 second year computing students were randomly
assigned either to a group that received a combination of
problem decomposition and cooperative learning (DCL), or to
another group which received cooperative learning method (CL)
in this 28-week treatment. The participants worked in a group
of four, with a mix of students with high and low self-regulated
learning levels. The post-assessment was administered to
measure their software development performance that was
based on self-programming appraisal, project performance and
number of proposal revision. The results revealed that students
in the DCL group performed significantly better than those in
the CL group in both the self-programming performance and
software project development. Also, the DCL group made fewer
amendments to the project proposal than their counterparts.
Thus, the problem decomposition technique incorporated into
the “problem and analysis stages” within the system
development cycle should be considered as an alternative
strategy for effective way of teaching, learning and completing
software engineering project.

Index Terms—Chunking technique, cooperative learning,
problem decomposition, software development project.

I. INTRODUCTION
With the advancement of technology, organizations are

constantly incorporating utilizing the Information system (IS)
in their daily business processes in order to achieve success,
stay competitive, increase profit and market share. With this,
the expectation on information communication technology
(ICT) projects is increasing. More sophisticated and
advanced functionalities with user friendliness features are in
demand. In addition to technological challenges, business
needs, user requirements, organizational expectation issues

Manuscript received December 14, 2011; revised February 3, 2012
H. H. Tie is with the Centre for Postgraduate Studies, SEGi College

Penang, Malaysia, 43 Green Hall, 10200 Penang, Malaysia (e-mail:
hhtie@segi.edu.my).

I. N. Umar is with the Centre for Instructional Technology & Multimedia,
University Science Malaysia, 11800 USM, Penang, Malaysia (e-mail:
irfan@usm.my).

arise, experiences and expertise of IS project teams are
contributing failure to an extensive number of development
initiatives [1]. The development of IS project requires
managerial, coordination, problem solving, critical thinking
and analytical skills. These are the key skills that need to be
developed and grasped in studying programming courses.
Conversely, programming demands complex cognitive skills
that students find them too complicated to understand,
interpret and perform. Likewise, educators involved in
teaching the software development process to computing
students are continually facing different challenges in
delivering the system’s concepts, programming activities,
development tools and techniques; and students are having
difficulties to comprehend them. During the learning process,
students are to understand both basic requirements such as (i)
the user requirements and (ii) the functionalities of the
software to perform those requirements. Once these needs
have been identified, determining the scope and establishing
business requirements are carried out before the stages of
software design, implementation and maintenance. This
software development process involved problem solving,
planning, critical thinking, reasoning and social interaction
that computing students find these combination of skills too
difficult to acquire. [2] Indicated that understanding the
software development process, and learning how, why and
when to create deliverable software are through working with
“real system development project”. The engagement in
developing software project could foster growth in problem
solving, critical thinking and interpersonal skills.

Based on problem decomposition technique, students are
to look at all the possible requirements stated by the users and
then to analyze them. In this case, problem decomposition as
chunking method is a systematic way of decomposing the
problem scenario into smaller manageable sub-problems [3].
With its emphasis on problems rather than solutions, this
approach allows the students to understand the idealized
problems and then to link them with their specific domain
knowledge in order to drive the requirement and analysis
engineering process. Meanwhile, [3] stated that
decomposition is a way of analyzing and managing
complexity. It is a problem solving technique that to be
applied in the requirement and analysis phase for identifying
the scope of the system. Subsequently, it is incorporated into
the design phase so as to determine the logical structure and
functionality for building the system. This approach supports
both the high-level abstract view of requirements and the
lower-level detailed view of processes.

Thus, could this approach assist the students in identifying
the novel scenario and then in decomposing the scenario into
sub-scenarios by looking at all the possible development

Problem Decomposition and Cooperative Learning: an
Exploratory Study in Enhancing Software Engineering

Projects
Tie Hui Hui and Irfan Naufal Umar

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

105

constraints? Also, will this approach help the students to turn
problems into solutions by creating new ideas?

II. PROBLEM STATEMENT
Software project development is not just about identifying

the basic requirements stated in the given novel scenarios. It
is also not merely about learning some programming
language syntax. This development process requires the
abilities to handle the software engineering stages and to turn
the problem scenario into a valid workable application.
Empirical research findings disclosed that undergraduate
computing students with limited theoretical programming
knowledge, problem solving and practical skills are facing
challenges in establishing project objectives, defining
software functionalities and completing the system (software)
within the given timeline [4]. For successful software
development, these knowledge and practical skills are needed
and to be applied in all phases of development cycle which
students seem to lack. Likewise, the initial findings in Table I
reveal that the problems faced by undergraduate computing
students in learning programming and developing systems
are in accordance with literature concerning problems in
computing programming. The preliminary statistical results
indicated that 20 percent of the students’ project scope had
been revised after their project proposal submission. With
this, only few students had completed the system on time and
achieved the project objectives. However, majority of them
were still working on it until the last minutes with incomplete
functionality. Thus, only limited testing was conducted. If
project duration is not a factor, then a comprehensive testing
strategy could be implemented and undiscovered errors may
perhaps be detected. This will somehow increase the
robustness of the implemented software. In line with the
findings reported by [5] on software projects failure in the
software industry that achievable project objectives,
executable functionalities and fulfilling the users’
requirements are the key to IT project success.

TABLE I: PROBLEM IN DEVELOPING SOFTWARE ENGINEERING
Requirement and analysis stage

• scopes of the system are too large or too visionary
• lack of clearer software scope
• uncertain with the project objectives
• lack of stakeholder participation in the design
• literature review is too brief or incomplete
• ill-defined functional modules
• poor planning and time management
• incomplete testing
• limitation on programming language knowledge
• incompatibility between technology and

programming languages
• lack of problem solving, analytical and reasoning

skills
• lack of programming conceptual understanding

Programme development begins with problem

identification. Once these problem requirements have been
identified, the selected programming languages will be
applied in the implementation stage. Programming languages
such as C#, JAVA, VB.net and ASP are commonly used in
developing the programming solution. Planning, logical

reasoning, problem solving and critical thinking are the skills
required in the process of learning and foremost during
software development [6]. In order to achieve higher success
rate in software development, these knowledge and skills are
crucial and needed to be applied throughout the software
development phases, which the students are facing difficulty
to acquire them. Using the combination of programming and
problem decomposition technique effectively in course
delivery, [6] revealed that logical reasoning and problem
solving skills can be cultivated while learning to develop a
valid workable application.

The preliminary questions asked prior to the software
development process are based on the nine topic areas such as
(i) business scope of organization, (ii) business requirements,
(iii) user requirement, (iv) system requirements, (v) project
scope, (vi) project timeline pressure, (vii) technology
compatibility, (viii) functionalities / technical complexity,
and (ix) programming language. In addition to the
information obtained, constraints encountered by students
handling software development activities are (i) unclear
project scope as users’ requirements have been frequently
revised, (ii) least user involvement in the designing stage, (iii)
lack of management involvement, and (iv) daily processing
steps have been ill-defined and often being ignored by staff
operating them, and (v) anxiety in handling software projects.
With lots of uncertainties at the preliminary stage, there is no
surprise that the project scope, requirement and constraints
(technical and programming tools) are frequently revised
throughout the developing cycle. In turn, the design and
coding activities only take place towards the end of the
development schedule plan. This gives the students
insufficient time to implement the specifications as stated in
the software proposal; and may not have sufficient duration
for evaluating the product [7].

The development of IS project requires an effective
participation of stakeholders (users), a comprehensive
reviewing of the current tasks flow, understanding of users’
requirements and problem encountered. Despite this initial
investigation and involvement, software development
constraints in relation to external factors and development
factors should be emerged. These external factors are still
largely controlled by the amount of information obtained
from the stakeholders. It has been seen as the responsibility of
the developers to obtain the required information. The
development factors are generally conceptualized as an
application process to incorporate both knowledge and
programming skills as well as aptitude in the project
development. By reviewing the development factors, this
allows the students to assess their strengths, skills and
weaknesses. Thus, they will use this information to make
subsequent judgment on whether any additional details,
further investigation or any refinement in the project proposal
is required. The constraint factor model (CFM) presented in
Fig. 1 encouraged the students to have a helicopter view of
the project aspect and then to zoom into all possible details.
With this, students will have the opportunities to construct
related programming activities that are based on the analysis
findings. From the information gathered, students will
actively engage in evaluating their abilities to develop those
required skills with an assumption that they intend to
undertake this project for success. It becomes the students’

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

106

re
co

Fa
w
m
A
th
im
un
ac
ex

A

pr
de
pr
th
pr
sy
st
to
an
ke
co
H
sy
no
be
ar
fin
th
re
ch
th
co
pr
de
pr
ar
pr

esponsibility t
omplex and ch

 Fig. 1. Const

By looking a

actor Model (C
will help the s
methodology, a
Also, it encoura
his project a
mplementation
nderstanding o
ctivities indic
xperimentory

A. Problem D
Stages
Similar to

rogram involv
evelopment p
roceed to plan
he documentat
rogramming p
ystem devel
akeholders’ re

o the success o
nd environme
eep pace. Som
onstant chang

However, it is
ystem and to e
ot always con
e the fact that
re needed in th
nd the develop

hey need longe
equirements an
hallenge is wh
he technology
oding stage.
roduct was us
evelopment p
roject scope h
re established
roject proposa

to manage the
hallenging pro

traint Factor Mod

at these constr
CFM) at the e
students to s
approaches an
ages the stude
s well as th

n. This furthe
of the new kn
cate active, r
processes of t

Decompositio

any program
ves steps. The
process begin
nning the solut
tion. It require
process and to
lopment me
equirements a
of IS developm
nt undergo co

mehow this re
ges in busin

a challenge
establish the so
nvey their nee

they may not
he first place. W
pment process
er time to have
nd the system

hen the student
y device with
Also, the lite

sually not don
process until
as been firme

d and any m
al will contrib

eir learning a
ogramming tas

del (CFM) in softw

raints indicate
early stage of t
elect the suit

nd design for
nts to analyze
he potential
er assists in
nowledge acqu
reflective, and
the learning ap

on in Software

m solving tas
five main sta

n with proble
tion, coding, te
es the students
incorporate th

ethodologies.
and system obj
ment project. A
ontinual chan
evolution has
ness and use

to determine
oftware requir
eds and expect
t fully underst
With such unc
s time consum
e solid underst

m’s functionali
ts discover the
programming

erature review
ne yet at the b

when necess
d up and final
odification or
bute to the de

and take invar
sks.

ware developmen

ed in the Cons
the developme
table develop
their new pr

e the success ra
benefits of
strengthening

uired. These e
d exploratory
pproach.

e Development

sks, developi
ges in the soft
em analysis,
esting and end
s to understan
hese stages int

Likewise,
jectives are cr
As business sy
nges, the IS sh

contributed t
ers’ requirem
e the scope o
rements as use
tations. This c
tand precisely
certainties, stu
ming and tedio
tanding of the
ities. Adding t
e incompatibil
g languages a
w of such si
beginning of t
sary. By then
l user requirem
r additions to
elay in the pr

riably

nt.

straint
ent, it
pment
oject.
ate of
such

g the
entire
y and

t

ing a
ftware

then
d with
nd the
to the

the
rucial
ystem
hould
to the

ments.
of the
ers do
could
what

udents
ous as
users’
to the
lity of
at the
imilar
the IS
n the
ments
o the
roject

comp
deco
synth

Fig

Th
stage
Softw
techn
phas
inve
requ
activ
throu
stude
chun
activ
requ
their
and c

At
stude
infor
gene
objec
analy
and t
the s
these
succ
this
prog
IS d
impl
suita
langu
exec
for s
syste
expe
user
make
the
expe
deve

pletion. In th
omposition so
hesizes in-dep

. 2. Problem Deco

he first phase
es in the sy
ware constra
nologies are
se. This indi
stigate, revi

uirements. The
vities in proje
ugh problem
ents to examin
nking them in
vity requires th
uirements dete
r own program
completing th
t the second
ents formula
rmation. The
eral solution a
ctives against
yze the identif
then to presen
solution. This
e defined prob
essfully or if s
phase, the st

gram skills and
development p
lementation p
able developm
uages while

cutable solutio
syntactical err
em that the
ectation as de
requirements
e maintenance

developmen
ectations are
elopment is

his aspect, F
oftware engin
pth evaluation

omposition Softw
product develop

of Fig. 2 is b

ystem develo
ints, literatur
illustrated in
icates the ta
iew and un
ese are the cr
ect developm

m decomposit
ne the user req

nto manageabl
he students to
ermined by th
mming skills an
he proposed sy
d phase (req
ate solutions
problem form

analysis and t
t the requirem
fied problems

nt the problem
 allows the st
blems and sol
some form of
tudents might
d knowledge w
project succe

phase, the stu
ment tools

converting
on (system). T
rors, and then

output is
fined in the i
evolve throug

e and support
t process b

e established
iterative proc

ig. 2 present
neering (PDS

n in the develo

ware Engineering
pment process.

based on the
opment life
re review of

the problem
asks that stu
nderstand b

rucial steps of
ment process.

tion techniqu
quirements m
le section. En
have deeper u

he users as w
nd capabilities
ystem.
quirements an
s based on
mulation is d
the compariso

ments. It helps
s and user spec

m solution, and
tudents to det
lutions could b
f modification
t even review
which in turn

ess. In the de
udents are to

and specific
the solutio

Testing is carri
to ensure a f
in accordanc
nitial proposa
ghout the syste
an ongoing p
begins when
d. In this
cess where n

ts a proble
SE) model th
opment phases

g (PDSE) Model i

first and seco
cycle (SDCL

f processes a
m decompositi
udents need
efore defini
f identifying t
Detail analy

ue allows t
more critically
ngaging with t
understanding
ell as to revie
s in constructi

nd design), t
the gather

erived from t
on of the syste
s the students
cific techniqu

d thus to valida
termine wheth
be implement
is necessary.

w their existi
could influen

evelopment a
apply the mo

c programmi
on design in
ied out to ver
fully operation
ce with use
al. Business a
em usage, whi
rocess. As suc
n changes

case, syste
new business

em
hat
s.

in

ond
L).
and
ion

to
ing
the

ysis
the
by
the

g of
ew
ing

the
red
the
em
to

ues,
ate
her
ted
At

ing
nce
and
ost
ing
nto
ify
nal

ers’
and
ich
ch,
in

em
ses

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

107

processes are identified with increase in advance
functionalities and complexities of processes. In fact the
project success depends on in-depth evaluation at the
problem decomposition phase in the PDSE model that
derives realistic expectations in order to accomplish the fully
operational system within the allocated timeline. Thus, it
could somehow assist the students in handling the system
development project to transform their performances.

III. RESEARCH QUESTIONS
In this study, three primary questions have been

formulated to address the research outcomes:
1) Is there any significant difference in the number of

revisions made to the project proposal between students
taught in the DCL and CL instructional methods?

2) Is there any significant difference in self-programming
performance between students taught in the DCL and CL
instructional methods?

3) Is there any significant difference in software project
performance between students taught in the DCL and
DCL instructional methods?

IV. RESEARCH METHODOLOGY
The purpose of this study is to investigate the effects of

problem decomposition with cooperative learning (DCL) and
cooperative learning only (CL) instructional methods on the
undergraduate computing students in developing final
product (software). It aims to examine whether the
combination of problem decomposition technique and
cooperative learning as an effective alternative solution in
programming education during software development.

A. Research Design
A quasi-experimental design was used to measure the

effect of DCL and CL instructional methods on the students’
programming development performance. The assessment of
students’ programming development performance was
categorized into three components that include (i) number of
revisions to project proposal, (2) self-programming
performance, and (3) software project performance. As such,
their programming development performance was measured
based on the scores obtained from the number of revised
project proposal, the self-programming appraisal (SPA)
questionnaire, and the software project evaluation (SPE)
mark sheet. In this pilot study, a group of 44 students from the
second year undergraduate computing course were involved.
These two classes, all intact groups, were randomly assigned
to the two treatment groups. The experimental group (20
students) received the DCL treatment while the control group
(24 students) received the CL treatment. Those in the DCL
group received the combination of problem decomposition
and cooperative learning strategy in acquiring the basic
software development methodologies. In the CL group, they
were only exposed to cooperative learning strategy in
developing the group project. To understand the concepts of
software engineering, both groups were taught to analyze the
types of software process techniques (e.g.: spiral
methodology, rapid prototyping model, incremental model,
object oriented programming, and Agile software

development). For this study, the course comprised lectures
and practical sessions. In classroom, the lecturer reviewed
and exploited the various types of system development
processes and tools. During practical session, the students
applied suitable programming languages in coding.

B. Research Instruments
The students’ programming performance was measured

based on the scores obtained from the number of revised
project proposal, the self-programming appraisal (SPA)
questionnaire, and software project evaluation (SPE) mark
sheet. The assessment of their development performance
includes: (i) number of revisions to project proposal, (2)
self-programming performance, and (3) software project
performance. The SPA questionnaire was used to measure
the students’ programming knowledge and skills developed
throughout the course semester during the team project
activities. The number of revisions made to the project
proposal was measured as to determine their understanding
on the initial problems, user requirements and scope of the
system. Meanwhile, the Motivated Strategies for Learning
Questionnaire (adapted from [8]) consists of 23 items was
used to identify the students’ self-regulated learning level
(high or low SRL) prior to the treatment. In this study, the
MSLQ mean score of the sample was 3.50. Students who
scored 3.50 and above the group mean were categorized as
high SRL and those who scored below 3.50 were classified as
low SRL. Immediately after the treatment, the SPE was
administered to the participants during their software
presentation session to measure the students’
strategic/conditional knowledge and programming skills.
Prior to it, a set of reliability tests were conducted on the
instruments used in order to determine the Cronbach’s Alpha
reliability coefficients. The reliability values of instruments
were: (i) 0.90 for the SPE, and (ii) 0.92 for the SPA.

C. The Course Material
Topic imparted to the students during the 28 weeks of

treatment (two semesters) was associated with the software
project management and development. In the first semester
(fourteen weeks), topics related to the basic software project
management were discussed with students. In addition to
these topics, the problem solving analysis through problem
decomposition is covered. For the second semester, students
were mainly concentrating on developing the software and
the role of lecturer has been switched from lecturing to
facilitating and tutoring. This is to ensure that the students
achieve all objectives set in the project proposal and complete
the project within stipulated timeframe.

D. Data Collection Procedures
The second year semester one computing students in the

two intact classes were involved in this 28 weeks study. They
were randomly assigned to the two treatment groups (DCL
and CL). In this study, the course comprised lectures and
practical sessions. To understand software engineering
concepts, the students were exposed to the basic software
development methodologies (SDM) in the theoretical class
session. During the practical session, they were assigned to
develop software by using the identified programming
languages and the selected software process technique while
progressed throughout the development stages.

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

108

The students in both experimental groups worked
cooperatively in a team of four members. Each team
consisted of two high and two low SRL students. During the
second week of treatment, the students had to submit their
project proposal and the number of changes made after the
first submission was recorded. They were persistently
required to cooperate on every programming activity
throughout the development stages. Once the coding has been
completed by the individual team member, the integration of
all modules was carried out to ensure the compatibilities of
the functions within the product (software). In the second
semester, they concentrated on developing the software and
the role of lecturer has been switched to facilitator mode. It
was to ensure that the students achieve all objectives and
complete the project within stipulated timeframe. In Week 28,
both groups were assigned a presentation slot to demonstrate
their software. Immediately after the treatment, each group
was given an hour to demonstrate their software.
Immediately after their software presentation, the students
were asked to complete the SPA questionnaire to measure
their self-progression on the programming knowledge and
skills gained throughout the development cycle. Meanwhile,
the SPE instrument was used to measure the students’ logical
understanding of the software codes, strategic/conditional
knowledge and programming skills. These two instruments
were used to assess the students’ programming performance
in terms of coding skills, programming knowledge and
software process techniques. Also, the number of revisions
made to the project proposal was measured as to determine
their understanding on the initial problems, user requirements
and scope of the system.

V. RESEARCH FINDINGS
The SPSS 17.0 for Windows was used in this study. The

MANOVA statistical technique was applied to test the
research hypotheses on the three dependent variables: (i)
number of revisions to proposal, (ii) self-programming
performance and (iii) software development performance.
The analyses results are shown in Table II and Table III. The
MANOVA results clearly revealed significant differences in
all the three dependent variables stated in the research
hypotheses.

TABLE II: MANOVA FOR THE SCORES OF DEPENDENT VARIABLES

BETWEEN THE TWO EXPERIMENTAL GROUPS

Dependent variables df Mean square F Sig.

Number of revised proposal 1 19.88 13.62 0.001*

Self-programming performance 1 2.21 13.10 0.001*

Software development performance 1 686.59 14.68 0.000*

*significant at 0.05 level

Hypothesis 1: There was no significant difference in the

number of revisions made to the project proposal between the
DCL and CL groups. In this study, the MANOVA analysis
result indicated a significant difference in the number of
revisions made to the proposal between the DCL and the CL
group (F: 13.62; p: 0.001), with the DCL group performed

significantly less amendments to the project scope in the
proposal than the CL group (X DCL: 1.40; X CL: 2.75).
Therefore, this finding has rejected the first hypothesis.

TABLE III: DESCRIPTIVE STATISTICS OF THE DEPENDENT VARIABLES FOR

THE TWO TREATMENT GROUPS

Dependent variables Group Mean Mean
Diff SD N

Number of revised
proposal

DCL 1.40
1.35

1.00 20
CL 2.75 1.36 24

TOTAL 2.14 1.37 48

Self-programming
performance

DCL 3.71
0.45

0.34 20
CL 3.26 0.46 24

TOTAL 3.46 0.46 48

Software
development
performance

DCL 77.60
7.93

6.50 20
CL 69.67 7.12 24

TOTAL 73.27 7.85 48

Hypothesis 2: There was no significant difference in

self-programming performance between the DCL and CL
groups. The result indicated that there was a significant
difference in self-programming performance between both
groups (F: 13.10; p: 0.001). The students who received DCL
treatment significantly outperformed those of CL treatment
(X DCL: 3.71; X CL: 3.26) in self programming knowledge
assessment. Thus, the second hypothesis has been rejected.

Hypothesis 3: There was no significant difference in the
project performance between the DCL and CL groups. The
finding indicated a significant difference in the software
development performance between the DCL group and the
CL group, with the former performing significantly better
than the latter group (F: 14.68; p: 0.000; X DCL: 77.60; X
CL: 69.67). Thus, this finding has also rejected the third
hypothesis.

VI. DISCUSSION
This study aims to investigate the effectiveness of problem

decomposition technique used in learning software
development process on the students’ programming
development performance. These second year computing
students from two intact groups were randomly assigned to
either one of the instructional methods (DCL or CL). One
group received the DCL treatment and the other was
receiving the CL treatment. During the twenty eight weeks of
treatment, the students in both groups worked cooperatively
in a team of four members. There were randomly assigned to
teams based on their level of SRL, and each team was
consisted of two high and two low SRL members. The
research findings revealed a significant difference between
students taught in the two instructional methods on all the
three dependent variables: (i) the number of revisions made
to the project proposal, (ii) self-programming performance,
and (iii) the project development performance. The analyses
indicated that students in the DCL group performed
significantly better in making lesser adjustments to the
project proposal than their peers in the DL group. These
students in DCL group had shown significant result on the
capability of self evaluation in terms of their

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

109

self-programming performance as compared to those in CL
group. Similarly, these students of DCL group significantly
outperformed those in the CL group on project development
performance. As such, the DCL instructional method
significantly influenced the students’ programming
performance as they progressed.

The problem decomposition with cooperative learning
method significantly assisted the students in identifying the
potential requirements and risks by zooming at all possible
angles while determining the software scope. This technique
helped the students to focus on the novel problems and break
them into smaller manageable chunks for further analysis.
This finding is in line with [3] and [9] that problem
decomposition technique as chunking method did assist the
students taught in the DCL group in dividing the tasks into
syntactically related non-overlapping groups of requirements
(users or system). This technique is seen to be an important
step that enables the students to identify and define the
software scope before proceeding to development. In
accordance with [2], this micro level of identifying and
analyzing problems at each IS development process allows
the DCL students to visualize software requirements from the
users’ perspective. Based on user requirements, the
evaluation on business processes, realistic expectation and
constraints on software project within the project scope
spectrum from the macro level to micro level have helped
them in creating a pipeline of new challenging tasks for the
software project. This allows the students to identify suitable
and manageable project scope so as to complete the project
within the defined timeline. In other words, the recognition of
requirement, resources and constraints, as well as the
discovering of problems are crucial to software project
success. The problem decomposition approach encourages
the students to look at possible components and analyse every
possibility, thus improving their analytical thinking and
problem solving skills. Therefore this finding demonstrated
that students who worked on decomposition through
problem-based learning had invested more effort and time on
requirements investigation and analysis and shown deeper
understanding on software components as compared to those
taught in the CL method. In turn, they have demonstrated
better ability to complete the software project within the
period of time. Likewise, students in the DCL group made
significantly fewer changes to the project scope in their
project proposal. This problem identification process applied
in software development stages allowed students to set
reasonable challenging project scope that is within their
capabilities for completion without overly ambitious in
building such fully operational system.

Moreover, this problem decomposition technique allows
the students to brainstorm on the novel problems that
stimulates higher cognitive thinking and in turn cultivates
“self troubleshooting” abilities [3][10]. Through team
interaction, the discussions helped each member to ask “why”
and “how” on programming statement that somehow reduce
mistakes, increase quality in codes and shorter development
cycles as well as increase self confident level. Thus the
findings on software development performance have
supported previous empirical studies that the adoption of
problem decomposition and cooperative learning yielded
better quality, fewer defects of codes and shorter

development cycles [7][9][11]. This further increases the
software project success rate.

VII. CONCLUSION
The study has emphasized the importance of problem

decomposition and cooperative learning technique in
learning software development process through handling
team project for classroom academic performance. The
integration of problem decomposition in information system
development cycle has shown significant improvement in
completing software projects. This technique allows students
to chunk problem scenarios and user requirements into
manageable functions. With this, students have deeper
understanding of initial problems and requirements during
analysis and design stages that eventually to fulfill key
aspects towards the software project success. It emphasizes
on problem solving through decomposition, system
requirements, application development and implementation,
which in turn have shown positive influenced in students’
programming performance. Likewise, it enables the students
to cultivate the essential cognitive skill such as analytical,
logical and problem solving skills in the software project
environment. Thus, this strategy has helped to close the gap
between both stages in the practical step and general research
analysis principles and to reduce the software project failure
rate. Thus, this technique when applied in software
engineering could be of great value in terms of guiding the
students to identify, understand and make prompt decisions
throughout the project development process. Subsequently, it
promotes the development of programming knowledge and
competency within self through breaking abstract scenarios
into smaller chunks. In teaching and learning, educators
should promote and enforce problem decomposition
technique throughout the development activities that in turn
will cultivate innovative software-building and reveal higher
programming achievement.

REFERENCES
[1] B. Hughes and M. Cotterell, Software project management.

Maidenhead: McGraw Hill. 2006.
[2] J. Helwig, “Using a ‘real’ systems development project to enrich a

systems analysis and design,” in Proc. of ISE Conference, Columbus,
2005, pp. 1-6.

[3] J. P. Poveda and J. T. Borras, Inductive logic programming and its
application to the temporal expression chunking problem. Ph.D.
Programme on Artificial Intelligence (UPC). LSI Department
Technical Report – January. 2007.

[4] S. Shahida, T. K. Ahmad, Z. Zurinahni, and S. Sarina, “System
development: What, why, when and how CASE tools should support
novice software engineering,” The 3rd Malaysian Software
Engineering Conference. 2007, pp. 256-260.

[5] L. A. Kappelman, R. McKeeman, and L. Zhang. Early warning signs of
IT project failure: The dominant dozen. Information Management
Journal. 2006. pp. 31-36. Retrieved May 2, 2011. Available:
http://www.ism-journal.com/ITToday/projectfailure.pdf

[6] I. Miliszewska and G. Tan, “Befriending computer programming: A
proposed approach to teaching introductory programming,” Issues in
Informing Science and Information Technology, 2007, 4: 277-289.

[7] R. Spencer. The streamlined cognitive walkthrough method, working
around social constraints encountered in a software development
company. CHI Letters. 2000, 2(1): 353-359.

[8] R. R. Pintrich and E. V. DeGroot, “Motivational and self-regulated
learning components of classroom academic performance,” Journal of
Educational Psychology, 82: 33-40, 1990.

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

110

[9] K. Taku and M. Yuji, “Use of support vector learning for chunk
identification,” In Proceeding of CONLL-2000 and LLL-2000, pp.
142-144, 2000.

[10] K. A. Rie and Z.Tong. A high performance semi-supervised learning
method for text chunking. 2005. Retrieved July 10, 2011. Available:
http://riejohnson.com/rie/ando_zhang_ac205.pdf

[11] C. A. Meseka, R. Nafziger, and J. K. Meseka, “Student attitudes,
satisfaction, and learning in a collaborative testing environment,” The
Journal of Chiropractic Education, vol. 24, no. 1, pp. 19-29, 2010.

Tie Hui Hui received her Doctor of Philosophy (PhD) degree in
Instructional Technology from the University Science Malaysia (USM),

Malaysia in 2011 and holds a Master in IT and Business (MSc in ITBus)
degree from the University of Lincolnshire and Humberside, UK. She is a
senior faculty member at the Centre for Postgraduate Studies, SEGi College
Penang. Her research interests include effective methods of teaching
programming, software development and research methodologies.

Irfan N. Umar received his Doctor of Education (Ed.D) degree in
Instructional Design and Technology from the University of Pittsburgh,
USA in 1999. He is an associate professor at the Centre for Instructional
Technology and Multimedia, Universiti Sains Malaysia (CITM USM),
Malaysia. His research interest is mainly in instructional design,
instructional strategies and e-learning.

International Journal of Social Science and Humanity, Vol. 2, No. 2, March 2012

111

	组合 1
	77-H091

