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Abstract—Examinations at the end of a one semester course 

at a University of Applied Sciences give at best a snap shot of the 

learning results at a given point of time. Unfortunately, this 

information is far from sufficient to analyze and evaluate the 

learning progress during the duration of a particular course. If 

one intends to continuously improve the course with respect to 

an optimization of the learning progress, a more detailed 

analysis is necessary. For this reason, a model has been 

developed based on the hypothesis that learning progress is 

mainly governed by two effects: accumulation and segregation. 

A comparison of predicted examination results with actual ones 

permits to identify - by means of an optimization process - two 

parameters representing the respective strengths (weights) of 

these effects. The values of these two parameters then allow to 

classify the learning progress within the respective course and 

to represent a basis for such a continuous course improvement 

process. 

 
Index Terms—Accumulation effect, course development, 

learning progress, segregation effect. 

 

I. INTRODUCTION 

Due to the demographic development in Germany and the 

political boundary conditions, a rapid increase of student 

numbers on a mid-time range and also a shortage of qualified 

persons at work-force level are expected. For example, in the 

federal state Baden-Württemberg, the number of pupils 

leaving school with formal qualification for university 

steadily rose from 40,000 to about 70,000 within the last 

fifteen years. It is expected that this high level can be held for 

a few years before it continuously drops to about 54,000 until 

2030 (information of the Statistical State Office of 

Baden-Württemberg). This poses a major challenge for 

Universities of Applied Sciences. With respect to these 

limiting factors the quality of teaching and the improvement 

of the learning progress are more and more important.  

Especially, the drop-out rate as result of failed exams has 

to be decreased. At the study support center of Aalen Uni-

versity, we have developed several measures to support 

students in their first semesters [1]. 

Since the results of structural changes can only be seen 

with a delay of several years and since feedback loops can 

influence further development, system dynamic models seem 

to be an adequate tool to investigate complex systems arising 

in higher education. The application of the System Dynamics 

methodology began in the 1960s in the field of business 

 

 

administration [2]. Since then it has been applied to many 

fields including education [3]-[6]. For about two decades, the 

methodology is also utilized for questions arising in the 

education management domain.  

In [7], [8] Kennedy gives a broad review of System 

Dynamics models for education policy issues. In [9], [10] 

Kennedy has researched on managing quality in higher 

education. He investigated System Dynamics models for 

school management and simulated the evolution of quality of 

teaching, student performance, staff costs, and total costs. 

From his results, he made a good point that higher education 

departments may, through the use of such a model, obtain 

useful insights into the likely impact of education policies on 

the attainment of quality related objectives. 

In [11] a model and simulation of the teaching/learning 

process in a regular lesson of 45 minutes is presented, using 

system dynamics methods. The authors asked how a learner 

and a teacher really work and interact with each other. The 

time in their model is assumed to be 45 minutes, the length of 

a regular class lecture. They revealed the results that the 

advance knowledge about the types of teachers and learners 

warrants an efficient reengineering of the teaching-learning 

system.  

In [12], the primary completion and the gross enrollment 

rate of education systems using a Systems Dynamics model 

for primary education, calibrated for the case of Nicaragua, is 

presented. The authors discuss the structure and the behavior 

of educational systems by considering the intake, repetition, 

drop-out, and graduation in primary school. Their model 

calculates the evolution of the stocks of students in primary 

school and is improvable to a model for capacity planning at 

universities.  

We have introduced the idea of stocks and flows in [13] to 

describe the discrete time development of the stock of 

students in the semester at a University of Applied Sciences. 

We calculate the average number of students at each semester, 

the number of drop-out, and the number of graduation with 

two different admission scenarios. Our aim in this context is 

to optimize the enrolment sequence and predict future 

numbers of alumni, dropouts, and students in each semester. 

In the present paper we introduce a system dynamics 

model which is used to simulate the learning progress 

regarding a standard semester at Universities of Applied 

Sciences of 15 weeks. Our model consists of two parts: 

accumulation and segregation effects. We first describe each 

effect separately and present simulation results showing the 

impact of corresponding characteristic parameters for each 

effect. Our first results for the segregation effect resemble 

representations showing Polya processes as described e.g. in 

[6], pp. 398. We combine the effects of accumulation and 

segregation in a combined model and apply this model to 
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empirical data obtained from examination results of the study 

program “Industrial engineering” at Aalen University. We 

optimize the parameters of our model with respect to these 

data.  

Since the detection of structural high-leverage parameters 

in our model is one of our goals at this point of our investi-

gation, we have decided to formulate our model in form of 

mathematical difference and differential equations explicitly 

and run the simulation in Matlab/Simulink, instead of using 

one of the standard tools in system dynamics like STELLA, 

Powersim, Dynamo, Vensim, ithink or others. Thus, we are 

able to include or change particular parameters (perhaps 

nonvisible, but structurally important ones) that might be 

vital in the development of an adequate model for a certain 

system behavior. Especially, we hope to obtain a deeper 

insight into the learning process. 

 

II. BASIC INGREDIENTS OF THE MODEL 

A. Empirical Data 

The empirical data inspiring the presented work are 

examination results of the years 2009-2011 from the study 

program of industrial engineering at Aalen University. 

Examination results at Aalen University are grouped into 5 

grade levels.  

 A: “very good”  (school mark 1) 

 B: “good”    (school mark 2) 

 C: “satisfactory”  (school mark 3) 

 D: “pass”     (school mark 4) 

 E: “fail”      (school mark 5)  

Since we need a closer look at a finer scale of the grades, 

we use a transformation between the grade levels and some 

performance levels representing finer marks. Table I explains 

the transformation explicitly. Three performance levels are 

merged to a grade level, where A+, E0 and E- in practice are 

not really used. They are only defined for conformity reasons. 

In this article we use this transformation in both directions. 

As an example, the examination results in engineering 

physics during 5 consecutive semesters (a 1st semester course, 

the lecturer of which is one of the authors) are depicted in Fig. 

1. 
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winter semester 2009/10: mean = 3.87

summer semester 2010: mean = 3.36

winter semester 2010/11: mean = 3.16

summer semester 2011: mean = 2.33

winter semester 2011/12: mean = 2.28

 

Fig. 1. Examination results in engineering physics (5 consecutive semesters). 

 

In this particular case, the mean-values of the grades 

generally show an improving trend with a particularly high 

improvement from winter semester 2010/11 to summer 

semester 2011. Note that these data are the official results and 

are also available to the students. 

 
TABLE I: TRANSFORMATION BETWEEN GRADE LEVELS AND PERFORMANCE 

LEVELS 

grade levels A B C D E 

meaning 
very 

good 
good 

satisfactory 
pass fail 

performance 

level 

1 (A+) 

2 (A0) 

3 (A-) 

4 (B+) 

5 (B0) 

6 (B-) 

7 (C+) 

8 (C0) 

9 (C-) 

10(D+) 

11(D0) 

12(D-) 

13(E+) 

14(E0) 

15(E-) 

 

Understanding the processes underlying the particular 

performances of the respective semesters is one of the 

motivations of the presented work. Identifying long-term 

trends with respect to a particular course and taking them into 

account for further improvement is another. 

B. Initialization for the Performance Levels 

For simulation purposes and to allow a more differentiated 

insight into the learning progress, we now use the 15 perfor-

mance levels shown in Table I. 

The basic hypothesis is that the initial state is proportional 

to normally distributed weights: 

L(n)  

 
2

2

s

mn

e




                               (1) 

where 

n: number of performance level (n = 1,2,3,…,15) 

L(n): number of students in performance Level n 

m: mean value, e.g. 13 

s: standard deviation, e.g. 2 
Remarks: The distribution of the students to performance 

levels as defined in (1) and depicted in Fig. 2 is used for all 

subsequent simulations as initial distribution. The 

performance levels have to be read from right to left, i.e. a 

lower performance level means improved knowledge and 

better grades. The mean value at 13 is chosen such that at 

least half of the group would have failed at the beginning. 

The threshold for failing lies between the grades D and E, i.e. 

at 12.5 (see the light gray dashed line in Fig. 2). Since the 

performance levels are discrete and finite, the distribution is 

first normalized and then rescaled to contain sL  students. In 

our simulations, we first use 50sL . 

 

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

performance levels

a
b

s
o

lu
te

 f
re

q
u

e
n

c
y

distribution at time step k = 1 [sL = 50, m = 13]

 

Fig. 2. Initial student distribution to performance levels. 

 

Note that the typical course at Aalen University is a 4 

hours-per-week course with a typical duration of 15 weeks at 

the end of which an examination takes place. Therefore, the 

chosen time step for the simulation model is 1 week, starting 
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at week 1 with the initial distribution. During simulation, our 

initial distribution changes its shape according to the learning 

progress and moves to the left, i.e. to lower performance 

levels. 

C. The Basic Dynamic Hypothesis 

The basic hypothesis is that the dynamics of the learning 

progress is governed by two effects that are called 

“accumulation effect” and “segregation effect” in the context 

of this paper. 

“Accumulation” describes the effect that it becomes more 

and more difficult to mentally incorporate new topics during 

the course (within the framework of finite course duration). 

This is assumed to be a kind of “negative scaling effect”, 

since – with progressing time – it becomes more and more 

difficult  

 To remember and recall all of the already learned topics 

 To connect and link new topics correctly with already 

learned ones. 

“Segregation” describes the (relative) vicious circle effect 

(“success to the successful”): students who have an above 

average knowledge at their disposal at a given moment of 

time 

 Are (relatively) more able to successfully incorporate 

and connect new topics 

 Are (relatively) more motivated to learn, because they 

already “feel” successful and want this emotion to last. 

Both, the accumulation and the segregation effect, are 

subsequently modeled by means of transition probabilities. 

Note that “transition probabilities with polarities” are used in 

the context of this paper, i.e. a “positive” transition 

probability associated with a performance level n indicates 

that there is a probability for the corresponding group of 

students to advance to the next lower (better) performance 

level. A “negative” transition probability on the contrary 

indicates that there is a probability to degrade to the next 

higher (poorer) performance level: 

p(n) > 0  n  n - 1 

 p(n) < 0  n  n + 1 

 

III. MODEL DESCRIPTION  

A. Accumulation Effect 

The accumulation effect is described by a probability 

distribution :)(npacc  

0

1

1)(
n

n

acc enp




                                (2) 

with 

 n: number of performance level (n = 1,2,3,…,15) 

0n : characteristic parameter of the accumulation effect 

(the higher 0n , the slower is the learning progress)  

The transition probability of the 1st performance level is set 

to 0: .0)1( accp  This means that if a student has reached the 

1st performance level, there is no probability to advance 

further within the framework of the course. The student 

already knows all that he is required to know. 

Note that this kind of transition probability function is the 

solution of the following first order, time-continuous 

ordinary differential equation describing an exponentially 

saturating process, which is evaluated at discrete points (the 

performance levels): 

0)1(;
)(1

)(
0




 acc

acc

acc p
n

tp
tp                  (3) 

The update of the number of students at the performance 

levels n is governed by the following difference equation: 

)1,()(

)1,1()1()1,(),(





knLnp

knLnpknLknL

accacc

accaccaccacc    (4) 

where 

),( knLacc
: number of students in performance level n at 

week k 

:)(npacc  transition probability of the group at level n 
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Fig. 3. Transition probabilities for 90 n and 30 n . 
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Fig. 4. Distribution of students to performance levels at week k = 8 for 

90 n and 30 n . 
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Fig. 5. Distribution of students to performance levels at week k = 15 for 

90 n and 30 n . 

Fig. 3 shows the transition probabilities for the 

characteristic parameter 0n for 90 n  and 30 n  

respectively.  
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Fig. 4 and Fig. 5 present corresponding simulation results 

for these parameter values of 0n . Fig. 4 shows the result at 

time step 8k , i.e. week 8,  whereas Fig. 5 shows the result 

at week 15, the last week of the semester.  

It can clearly be seen that for 90 n  there is a slower 

progression of learning than in the case of 30 n , where a 

considerable part of the students reached the first three 

performance levels (obtaining an A in the subsequent exam), 

see Fig. 5. This is due to the different transition probability 

functions visible in Fig. 3.  

The graphs have to be read from right to left (see Remarks 

at the end of section B). The longer the course lasts, the more 

difficult it is to transfer to a better (lower) performance level, 

i.e. the transition probability is becoming smaller. The 

accumulation effect implicitly involves a process of oblivion. 

As a secondary effect, note the slight dispersion (increasing 

standard deviation) as the mean-value progresses. 

B. Segregation Effect 

The segregation effect is described by a probability distri-

bution ),( knpseg  of the group at the level n in week k : 

N

nkn
pknpseg




)(
),( 0

                         (5) 

where 

N:  total number of performance levels (here: N = 15) 

n: number of actual performance level (n = 1,2,3,…,N) 

p0: characteristic parameter of the segregation effect (the 

higher 0p , the faster is the learning progress)  

)(kn : average performance level at the kth time-step 

where )(kn  is calculated by 












N

n

seg

N

n

seg

knL

nknL

kn

1

1

),(

),(

)(
                           (6) 

),( knLseg
: number of students in performance level n week 

k 

Note that – in contrast to the transition probability calcu-

lation for the accumulation effect – the transition 

probabilities ),( knpseg
 do not only depend on the 

performance level n itself, but also on the time-step k. 

Moreover, the transition probabilities are not all positive 

(positive are only those performance levels “above” average, 

i.e. )(knn  ), but may also be negative (for those 

performance levels “below” average, i.e. )(knn  ). Finally, 

if the absolute value of a transition probability exceeds 1, the 

transition probability is saturated at 1 or -1, respectively. 

The update of the number of students at the performance 

levels n is governed by the following difference equation: 

]0),1([)1,1(),1(

]0),1([)1,1(),1(

)1,(),()1,(),(







knpifknLknp

knpifknLknp

knLknpknLknL

segsegseg

segsegseg

segsegsegseg

    (7) 

As initial distribution for the number of students L we take 

the one defined in (1) (see Fig. 2). Fig. 6 gives the transition 

probabilities for two values of the parameter 0p : 

2.015/30 p  and 067.015/10 p . Fig. 7 and Fig. 8 

show the learning progression at week 8 and week 15 for 

these values of the parameter 0p . 

 

0 2 4 6 8 10 12 14 16

-1

-0.5

0

0.5

1

performance level n

tr
a

n
s
it
io

n
 p

ro
b

a
b

il
it
y
 p

(n
)

 

 

transition probability for p
0
=0.2

transition probability for p
0
=0.066667

 

Fig. 6. Transition probabilities for 2.00 p  and 067.00 p  

 
 

It can clearly be seen that there is faster progression of 

learning and also a faster “drifting apart” from the 

performance levels for 2.00 p  than in the case 

of 067.00 p . This can be explained by the different 

transition probability functions visible in Fig. 6, which are 

now also dependent on k. It can be seen that there are some 

students who deteriorate, which can be seen in Fig. 6 from 

negative values of the transition probability. Once students 

have reached performance level 12, they improve further. For 

segregation parameter 2.00 p the improvement takes place 

even with probability 1 as soon as students have reached 

performance level 8. 

As a secondary effect, the standard deviation is steadily 

increasing as one could expect as the effect of a segregation 

process. 
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Fig. 7. Distribution of students to performance levels at week k = 8  

for 2.00 p and 067.00 p . 
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Fig. 8. Distribution of students to performance levels at weekk = 8 for 

2.00 p and 067.00 p . 
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C. Dynamics of a Combined Model 

As has been shown in the sections A and B, the parameter 

0n  of the accumulation effect and the parameter 0p  of the 

segregation effect have an important influence on the 

described effects and their speed. We are now interested to 

combine the two effects. 

In a combined model, this combination is achieved by 

adding the two transition probability functions (see (2) and 

(5)) and by an addition of the update formulae for the number 

of students at the performance levels (see (4) and (7)): 

),()(),( knpnpknp segacc                         (8) 

),(),(),( knLknLknL segacc                        (9) 

To simulate empirical data as good as possible we then 

have to identify the two characteristic parameters 
00 , pn  in a 

combined model, such that the simulated performance levels 

“fit” to the empirical data. As data we have chosen 

examination results for several courses (see Chapter IV). 

D. Optimization Process 

To identify the characteristic parameters we perform an 

optimization process. Before one can start the optimization 

process, two steps have to be carried out: 

 

 

 

 

21, xx


: normalized distributions (i.e.   121 ii xx ) of 

grade levels 

 i : index (i = 1..5: A to E)  

In our model we choose the vector L constructed as in (9) 

for 
1x


 where three components of L are merged to build each 

of the 5 component of the vector
1x


. The vector
2x


, 

correspondingly, is constructed from the grade distribution of 

the examination results. Note that the grade level 

distributions have to be normalized to obtain a distribution 

independent from the total number of students in one 

semester. The factor 100 in (10) allows an interpretation of 

the result as a percentage. The “distance” d between two 

grade level distributions is always greater than or equal to 0% 

(but could become greater than 100%).   

The distance measure d has to be minimized with respect 

to the parameters 0n and 0p . We divided the 00 , pn -plane 

into parts and evaluated the distance measure d at the 

corresponding grid points thus finding the minimal distance. 

The next step will be to apply a typical optimization 

algorithm to ensure that errors between simulation and real 

data are independent of the optimization algorithm used. 

We will illustrate the results for two examples in the next 

chapter: The examination results in engineering mathematics 

and engineering mechanics for the winter semester 2011/12. 

 

IV. APPLICATION OF THE COMBINED MODEL 

A. Engineering Mathematics Examination 

We apply our model to the data set from the 2nd semester 

engineering mathematics course in industrial engineering at 

Aalen University (winter semester 2011/12): 

 A-grade:    4 students 

 B-grade:    7 students 

 C-grade:    6 students 

 D-grade:  11 students 

 E-grade:  12 students 

In Fig. 9, the distance is graphically depicted as a function 

of 00 , pn . Although, the surface appears to be quite rough, 

there clearly is a global minimum %10optd  of the distance 

measure d in (10) for the parameters 5.37
0


opt

n , 0933.0
0


opt

p . 

The roughness is typical for statistical processes 

(Brownian motion, Martingal processes) and is even worse 

for a finer division of the 
00 , pn -plane. 
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Fig. 9. Surface plot (with contour lines below) of the distance function for the 

engineering mathematics course in the 00, pn -plane. 
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Fig. 10. Transition probabilities for the optimal parameters 00, pn  in the 

combined model at time step k = 15. 
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Fig. 11. Distribution of the performance levels for the optimal parameters 

00, pn  in the combined model at week k=15. 
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 first, the 15 simulated performance levels have to be 

aggregated to the 5 grades (see Table I).

 second, a distance measure between the simulated and 

the actual grades has to be defined:

  



5

1

2121 100,
i

ii xxxxd
                    (10)

where
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optimal parameters 00, pn with the actual one (at week k=15).

Fig. 10 presents the transition probabilities for the 

accumulation effect with 5.37
0


opt

n , for the segregation effect 

with 0933.0
0


opt

p and for the combination of the effects at 

time step k = 15. Fig. 11 shows the corresponding distribution 

of the performance levels for the combined model at week k = 

15 (the last week of the semester).

Fig. 12, eventually, presents the comparison of the 

simulated learning progress (light gray) with the empirical 

examination results in engineering mathematics (dark gray).

One can interpret the result as a learning process domi-

nated by a very slow accumulation process ( 5.370 
opt

n ) 

overlaid by a moderate segregation process ( 0933.00 
opt

p ).

There is a good agreement for grade A and E, but at the 

grades B to D we feel that the agreement maybe could be 

improved. The final distance of 10% represents a good 

comparability, but also indicates that further processes, apart 

from accumulation and segregation, may be involved.

B. Engineering Mechanics Examination

We now apply our model to a data set from a 1st semester 

engineering mechanics course in industrial engineering at 

Aalen University (winter semester 2011/12):

 A-grade: 26 students

 B-grade: 12 students

 C-grade: 10 students

 D-grade: 9 students

 E-grade: 4 students

In Fig. 13, the distance is graphically shown as a function 

of 00 , pn , again. The surface is very rough again.
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Fig. 13. Surface plot (with contour lines below) of the distance function for 

the engineering mechanics course in the 00, pn -plane.

The distance measure d for the engineering mechanics 

course looks completely different from the distance function 

of the engineering mathematics course. The minimum of the 

distance function d in (10) in this case can be found to be d = 

8 % for the parameters 0.100 
opt

n , 133.00 
opt

p .
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Fig. 14. Transition probabilities for the optimal parameters 00, pn in the 

combined model at time step k = 15.
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Fig. 15. Distribution of the performance levels for the optimal parameters 

00, pn in the combined model at week k=15.

Fig. 14 presents the transition probabilities for the accumu-

lation effect, for the segregation effect and for the combina-

tion of both effects with the optimal parameters at time step k

= 15. Fig. 15 shows the corresponding distribution of the 

performance levels for the combined model at week k = 15 

(the last week of the semester), again. The simulation in Fig. 

16 shows a good agreement with the empirical data at grade 

B and C. At the other grades an improvement could be better, 

again.
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Fig. 16. Comparison of the simulated distribution of grade levels for the 

optimal parameters 00, pn with the actual one at week k=15.

The obvious difference in the actual grade scales and the 

mean of the two courses (2nd semester engineering mathe-

matics and 1st semester engineering mechanics) may stem 

from various reasons:

 the intrinsic complexity of the mathematics course (2nd

semester) is much higher than that of the mechanics 

course (1st semester)

 the transfer part (new problems) of the mathematics 

examination is higher than that of the mechanics 

examinations



 in mechanics more additional tuition (e.g. exercise 

lessons held by students of higher semesters) had been 

available 

 more previous examinations (with solutions) had been 

available for mechanics than for mathematics 

 the 1st semester had a better respective initial 

performance level distribution than the 2nd semester (the 

school grades of the first semester students were in 

average significantly better than those of the 2nd 

semester students) 

Further investigations may help to identify the most 

dominant reason(s).  

 

V. CONCLUSION 

Starting from the dynamic hypothesis that the learning 

process of a course at university level is mainly governed by 

two effects, the accumulation effect (negative scaling effect) 

and the segregation effect (“success to the successful”), a 

time-discrete transition probability model comprising these 

two effects has been developed.  

Due to the lack of data concerning the pre-knowledge of a 

standard group of students at the beginning of most courses, 

we started our investigations with an arbitrary initial normal 

distribution of performance levels. The simulation results 

show the development of a “standard” course governed by 

accumulation and segregation, respectively, and illustrate the 

influence of the characteristic parameters. 

Empirical data have been available from the courses of 

engineering physics (1st semester), engineering mechanics 

(1st semester) and (advanced) engineering mathematics (2nd 

semester) over the last 2 to 3 years within the framework of 

the industrial engineering study program (B.Eng.) at Aalen 

University. Exemplarily, an optimization process has been 

carried out to fit the simulated results to the empirical data. 

This process yielded values for the characteristic parameters 

0n  (accumulation parameter) and
0p (segregation parameter).  

By means of this optimization process and the values for the 

characteristic parameters obtained in this way, the learning 

processes of two separate courses could be analyzed and 

compared. 

To our minds, the following points represent interesting 

aspects for future work in this area: 

 Measurements of the initial state and measurements of 

intermediate states are vital to validate/reject the normal 

distribution of initial performance levels hypothesis. 

Since at Aalen University we offer introductory 

mathematics courses for student beginners (with tests 

checking the knowledge of the students at different time 

steps) we meanwhile have a more realistic initial 

distribution of the student numbers at performance 

levels available. To exploit this distribution, will be one 

of our next steps.  

 The analysis of the development of the intermediate 

distributions during the course, e.g. in terms of 

mean-values and standard deviations, could hold 

valuable insights. 

 The optimization process, being a very basic one at the 

moment, has to be improved as well as to be refined. 

 The influence of improvement measures (e.g. 

reduction/restructuring of course contents, additional 

tuition [exercise lessons, question hours, examination 

preparation courses], etc.) has to be included into the 

simulation model and compared to reality. 

 Further effects on the learning progress, apart from 

accumulation and segregation, might be taken into 

account. 

 The two sub-models have to be analyzed further with 

respect to stability, steady-states and “conservation of 

students”. 

 The comparison with a time-continuous version of the 

model (e.g. a Vensim implementation) could be 

beneficial in terms of comparison of simulation results 

as well as communicability. 

 The comparison to other modeling approaches (“physics 

of socio-economic systems”) also represents an 

interesting aspect. 

 The development of future courses should be observed 

in the framework of the presented model. In particular, 

an analysis of the time-series of the model’s main 

parameters (n0, p0) could yield information about 

long-term trends. 

 The transfer of the results to other areas, e.g. staff 

development in the framework of organization design, 

could also be beneficial. 

We simulated the “natural” (continuous) learning process, 

not taking into account the peaks in the learning effort short 

time before the examination. In a pilot test we tried to enforce 

the continuous learning process by weekly tests. The results 

and a simulation of the learning progress in this context are 

planned for another publication. 

APPENDIX 

We give a short survey of programming code segments in 

MATLAB showing how the calculation of the performance 

levels is realized. The dots … indicate further lines of code 

not necessary to understand the main algorithms. Update 

procedure of the accumulation performance levels: 

 
K  = 15;       % course duration in weeks 

 N  = 15;       % performance levels 

 for k = 2:K    % kth week 

    for n = 1:N-1 

        % update of performance levels 

        L(n) = L(n) + p(n+1)*L(n+1)  

                    - p(n)*L(n); 

    end; 

    L(N) = L(N) - p(N)*L(N); 

 end; 

 

Update procedure of the segregation performance levels: 

 
 K  = 15;       % course duration in weeks 

 N  = 15;       % number of performance levels 

 for k = 2:K    % kth week 

    ...           

 

    if p(1) < 0 

       dL(1) = dL(1) + p(1)*L(1); 

    end; 

    if p(2) > 0 

       dL(1) = dL(1) + p(2)*L(2); 

    end; 

 

    % n = 2:N-1 

    for n = 2:N-1 

        % nth performance level       

        dL(n) = -abs(p(n))*L(n); 
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        if p(n+1) > 0 

           dL(n) = dL(n) + p(n+1)*L(n+1); 

        end;  

        if p(n-1) < 0 

           dL(n) = dL(n) - p(n-1)*L(n-1); 

        end;     

    end; 

 

   % n = 15; 

   dL(15) = 0; 

   if p(15) > 0 

      dL(15) = dL(15) - p(15)*L(15); 

   end;       

 

   if p(14) < 0 

      dL(15) = dL(15) - p(14)*L(14); 

   end; 

 

   % result for performance level 

   for n = 1:N 

       L(n) = max(L(n) + dL(n,0); 

   end; 
 

For the combined model we combined the procedures. 
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